

Computational Models in the Materials World - We are nearly there....

David FurrerPratt & Whitney

Rollie Dutton
Air Force Research Laboratory

AIAA Conference

April 10, 2013 Boston, Mass.

maintaining the data needed, and c including suggestions for reducing	ection of information is estimated tompleting and reviewing the collect this burden, to Washington Headquald be aware that notwithstanding a MB control number.	tion of information. Send comment parters Services, Directorate for Inf	s regarding this burden estimate ormation Operations and Reports	or any other aspect of the s, 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 10 APR 2013		3. DATES COVERED 00-00-2013 to 00-00-2013				
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER				
Computational Mo	dels in the Material	nearly there	5b. GRANT NUMBER			
		5c. PROGRAM ELEMENT NUMBER				
6. AUTHOR(S)			5d. PROJECT NUMBER			
		5e. TASK NUMBER				
		5f. WORK UNIT NUMBER				
7. PERFORMING ORGANI Pratt & Whitney,4	` '	` '	8	8. PERFORMING REPORT NUMB	G ORGANIZATION ER	
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	AND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)	
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAIL Approved for publ		ion unlimited				
13. SUPPLEMENTARY NO	TES					
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	ATION OF:	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	21		

Report Documentation Page

Form Approved OMB No. 0704-0188

Engineering Materials Today

- Materials are critical for every engineered product
- Traditionally materials were developed by trial and error processes, separate from application requirements
- Materials are currently defined by static specifications based on empirical data
- Challenge and opportunity of Computational Materials Engineering is the linking of Materials, Manufacturing Processes and Component Designs

Evolution of System Efficiency

Propulsion History

Propulsion Innovations Enabled by Materials and Processing Technology

DS blades, Cast &Wrought disks, 1st Gen Thermal Spray TBC coatings

LFW Ti IBR, Dual Property Ni Disk, TBC blades, Burn resistant Ti, CatArc Metallic Coatings

1st Gen SC blades, 1st Gen PM disk, 1st Gen EB-PVD TBC

Dual Property 3rd Gen PM disk, High modulus blade, 2nd Gen TBC coating

2nd Gen SC blades, Aluminide coatings, 2nd Gen PM/fracture tolerant disk

4th Gen PM disk alloy, Hybrid metallic airfoils, 3rd Gen TBC

Ni Superalloy Turbine Airfoils: Significant Advances in Alloys and Casting Processes

Key Technology Advances for Turbine Airfoil Materials

Materials & Product Engineering

<u>Mechanical Properties</u> = fn (chemistry and microstructure)

<u>Microstructure</u> = fn (chemistry and processing)

<u>Processing</u> = fn (component geometry)

Materials, Manufacturing Methods and Component Design are Strongly Coupled

ICME -Integrated Computational Materials Engineering

What a Tensile Test Looks Like.....

MIL-HBK-5H

Table 5.4.1.0(b). Desig	ın Med	chanic	al and	Physic	al Prope	erties of Ti	-6AI-4V	Sheet, St	rip, and
Specification	AMS 4911 and MIL-T-9046, Comp. AB-1			MIL-T-9046, Comp. AB-1					
Form	Sheet		P1ate			Sheet, strip, and plate			
Condition			Annealed			Solution treated and aged			
Thickness, in.	≤ 0.1875		0.1875-2.000		2.001- 4.000	≤ 0.1875	0.1875- 0.750	0.751- 1.000	1.001- 2.000
Basis	A	В	A	В	S	S	S	S	S
Mechanical Properties: F _{tt} , ksi:									
L	134 134	139 139	130 ^a 130 ^a	135 138	130 130	160 160	160 160	150 150	145 145
LLT	126 126	131 131	120 120ª	125 131	120 120	145 145	145 145	140 140	135 135
F _{cp} , ksi: L LT	133 135	138 141	124 130	129 142	124 130	154 162	150	145	
F_{su} , ksi	87	90	79	84	79	100	93	87	
(e/D = 1.5)	213 ^b 272 ^b	221 ^b 283 ^b	206 ^b 260 ^b	214 ^b 276 ^b	206 ^b 260 ^b	236 286	248 308	233 289	
(e/D = 1.5)	171 ^b 208 ^b	178 ^b 217 ^b	164 ^b 194 ^b	179 ^b 212 ^b	164 ^b 194 ^b	210 232	210 243	203 235	
e, percent (S-basis): LLT	8°		10 10		10 10	5 ^d	8	6 6	6 6
E, 10 ³ ksi E _ω 10 ³ ksi G, 10 ³ ksi μ	16.0 16.4 6.2 0.31								
Physical Properties: ω, lb/in. ³									

a The rounded T_{99} values are higher than specification values as follows: $F_m(L) = 131 \text{ ksi}$, $F_m(LT) = 132 \text{ ksi}$, and $F_9(LT) = 123 \text{ ksi}$.

To a Materials Engineer

To a Mechanical Engineer

b Bearing values are "dry pin" values per Section 1.4.7.1.

c 8%-0.025 to 0.062 in. and 10%-0.063 in. and above

d 5%-0.050 in. and above; 4%-0.033 to 0.049 in. and 3%-0.032 in. and below

Materials Capability Definitions

Materials properties are path dependent and are often "location-specific". Engineering specifications often treat entire material volume as single, homogeneous property capabilities.

Modeling and simulation can belo enhanced.

Modeling and simulation can help enhance component property capability definitions

Traditional Materials Definitions

- Design Curves Empirical; Data Driven
- Specifications
- Prints Notes
- Fixed Process Requirements

Requires Defining Material Equivalency and Methods to Differentiate Material of One Control Pedigree from Another

The Challenge: Need Models and Computational Infrastructure

Current materials definitions for design limit design flexibility and final component capabilities

There is a need for:

Model-Based Materials Definitions

Model-based material definitions enable locationspecific prediction, analysis and optimization

Model-based materials definitions enable greater material, process and component definitions

Goal is prediction and control of capabilities

ICME Involved Linkage with Other Discipline Activities

Materials Technology Enablers Pratt & Whitney

Computational Models and Advanced Data Management

Material & Process Modeling Goals ** Pratt & Whitney

- Develop Simulation Tools that Emulate Reality
- Develop Analytical Tools that Provide Insight in Material - Process - Property Relationships
- Implement Tools for Design and Manufacturing Benefits
 - Model-based Decisions
 - Tangible Improvements obtained based on Decisions

Holistic Integration: Digital Thread

Example of Integrated Computational Materials & Mfg Engineering

Not subject to the EAR per 15 C.F.R. Chapter 1, Part 734.3(b)(3)

©2013 United Technologies Corporation

Example of ICME Application

Case Study	Heat Treat	Forging	Part	Forge Wt	Part Wt	Burst Speed	Comments
1	Constant	Variable	Variable	-18%	-15%	+6%	Current State of the Art
2	Variable	Variable	Constant	-11%	n/a	+12%	Final Part shape constrained
3	Variable	Variable	Variable	-21%	-19%	+19%	Full impact of tool

Disciplines Touched by ICMSE

Integration of Computational Materials Science and Engineering is Complicated

- Materials
- Manufacturing
- Design
- Structures
- Quality
- Supply-Chain

Challenges to Effective ICME Deployment

- Accurate computational models
- Efficient simulation software tools
- Data and databases for model application
- Industry standard methods and protocols
- Computational methods for design linkages
- Well trained interdisciplinary workforce

Unique engineering skill sets are required to support each challenge

Computational Supply-Chain

A series of well-established, capable and viable organizations that provide necessary portions of the ICME Value Chain

- Fundamental Model Development
- Model Integration into Software Packages
- Maintenance of Software Tools
- Database Generation
- Application Engineering
- Customer Approval and Certification
- Education and Training

Conclusions

- ICME: Potential for dramatic changes to development time, cost, and product capabilities
- Computational materials engineering enables virtual manufacture and component testing for optimization and risk mitigation
- Application of ICME has several challenges: trained practitioners; tools and methods; and computational infrastructure

Any Questions?

